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Abstract/

o Y
In this paper, we presentsa unified method for the delay analysis of
)%
a large class of random multiple - access algorithms. Our method is based

on a powerful theorem referring to regenerative processes, in conjuction

with results from the theory of infinite dimensionality linear systems.
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1, INTRODUCTION

A key problem in the design of communication networks is the efficient
sharing of a common transmission channel, (such as a satellite link, a ground
radio channel, a computer bus, a coaxial cable, or an optical fibre) among a
large population of network users. This problem is referred to as the multiple-
access problem, since many independent users share, and, thus, access a common
channel for transmission of information. The solution to the multiple-access
problem must incorporate a distributed control scheme, termed multiple-access
algorithm, for allocating the channel resources among the network users.

The design and performance of wmultiple-access algorithms are highly
dependent on the nature of the users. When a channel is to support large
numbers of bursty (low duty-cycle) users, random multiple-access algorithms
(RMAAs) become more efficient than deterministic algorithms. This has been
early recognized by the researchers in the field, and a plethora of RMAAs
have been proposed during the past fifteen years {1,2].

The key performance measures of a RMAA are its throughput and delay
characteristics. The evaluation of such characteristics has been the subject
of numerous studies. In most cases, a Markovian model is eaployed, and the
existence of steady state of the random-access system 1s related to the
ergodicity of an underlying Markov process. Depending on the complexity of
the state space of such a process, this formulation usually Jives sufficient
information on the maximum 1nput tratfic rate that an algorithuo can maintain.
However, the evaluation of the delay charadacteristics 1S a much harder problem,
since they are intimately 1tnerwoven with the Jdynamical behavior of the
algorithm's scheduliny mechanisms. Due to this fact, 1t 1s not surprising that

results concerning the delay characteristics are limited, and are obtained after

1 rather intricate and fifficalt analysis, whieh s usually matched to the
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peculiarities of the specific algorithm at hand.

In this paper, we show how the delay analysis of RMAAs can be unified and
simplified, by the use of some known results from the theory of regenerative
processes, and the theory of infinite dimensional systems of linear equations.
After outlining the method in section 2, we demonstrate its wide applicability
and relative simplicity, by applying it, in sections 3 and 4, to three algorithms
that represent different classes of RMAAs, namely:

1) the Controlled ALOHA algorithm ("ALOHA-type" class) [6])

2) the "0.487" algorithm ("full sensing-blocked access" class) [7,8]

3) the n-ary stack algorithm ("limited sensing-free access" class)
[15,16,17]

For the above algorithms, we obtain explicit results on the induced mean
delay, for the Poisson infinite-user population model. The higher moments of
the delay, for the Poisson as well as for an arbitrary memoryless input stream,

can be computed using the same method.

2. THE METHOD

In random—-access systems, as in virtually every gueueing system, many of
the involved stochastic processes are regenerative. A regenerative process is

a process consisting of a sequence of regeneration cycles such that the

probabilistic structure of the sample function of the process during such a
cycle is the same for every cycle, and independent of that of previous or

future cycles [5]. The beginnings of such cycles are referred to as regeneration

times, and form a renewal process. A discrete-time process txn}n;1 is

s3aid to be regenerative with respect to the renewal process 1Rl}1,1, if

the process {xRi*n}ﬂil is a probabilistic replica of the process (X, I, ;1.

for every i, i=1,2,... .
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The regenerative probabilistic structure of a regenerative process makes
it possible to express 1ts asymptotic behavior in terms of quantities that
refer only to one cycle of the process. This is made precise by the following
elegant and powerful result, which will be referred to as the regeneration

theorem. [3,4,5]

Theorem 1
Let the discrete-time process {Xn}n>1 be regenerative with respect

to the renewal process {Ri}i>1‘ Also, let Ci = Ri4q = Ry, 1=1,2,...,

i
denote the length of the i-th regeneration cycle, and let f be a nonnegative,

real valued, measurable function.

c
1
1f ¢ = E{Cq} < » and s = E{ I £(X;)] < =, then,
i=1
1 " ) I s
Lim ~ L £(X;) = %im ~ E { Z £(X;) } = - , wep. 1
n+e N =1 n+e N i=1 c

Furthermore, if, in addition to the finiteness of C and S, the distribution of
C; is not periodic, then X; converges in distribution to a random variable

X%, and

E{f(x‘n)} =

nlw

Thus, under the conditions stated above, the limiting (expected) average,
and the mean of the limiting distribution of {f(Xp)},»¢ exist, coincide,

and are finite. Moreover, their common value is then given in terms of the per

cycle quantities S and C.
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Given a RMAA, let txn)n,1 be the process of interest associated with
the random-access syst2m; this process might, for example, be the delay process
induced by the algorithm. Then, provided that [Xn}n>1 can be shown to be
regenerative, the regeneration theorem itself shows the way to establish the
existence of steady state, and to compute the steady-state moments, and the distribu-
tion of {xn}n >+ by appropriately selecting the function f.

In virtually all existing RMAAs, it is relatively easy to identify regenera-
tive times (e.g., when the system becomes empty, or when an appropriate Markov
chain hits a suitable fixed state), at which the process of interest probabilis-
tically restarts itself. Given a RMAA and a function f, the problem then is to
exploit the dynamics of the algorithm, to find those per cycle properties of the
sample function of the process, that could be subsequently used to evaluate the
quantities C and S.

In section 3, it is shown that for the delay process, and for f(x) = x,
the computation of S and C are intimately related to the solution of an infinite
dimensional system of linear equations. It can be shown that this is the case
when f(x) = xn, n=2,3,..., as well [12]. Therefore, the steady-state moments
of the delay process induced by a particular algor?thm, can be computed
from the solution of the corresponding infinite linear system. In Appendix A,
we give a number of general results, that are useful in establishing the
existence and unigqueness of a solution, and in developing approximations to
the solution of such systems. In section 4, we apply these results to the
specific infinite linear systems developed for the three algorithms of section
3. This procedure involves the following steps.

Step 1 Find conditions under which the infinite linear system has a
unique, nonnegative solution.




Step 2 Show that the variables of interest coincide with the unique
solution.

Step 3 Develop arbitrarily tight upper and lower bounds on the solution.

3. THREE ALGORITHMS AND THEIR RELATED SYSTEMS OF EQUATIONS

For all three algorithms of this section, we assume a collision-type, packet-
switched, slotted, broadcast channel. The channel is accessed by a very large
(effectively infinite) number of 1dentical, independent, packet-transmitting,
bursty users. The cumulative packet generation process is modelled as a Poisson
process, with intensity A packets per slot. However, the proposed method can be
applied equally well, when the number of packets per slot are independent and
identically distributed (i.i.d) random variables.

We define the delay, Dn' experienced by the n-th arrived packet, as the time
difference between its arrival at the transmitter, and the end of its successful
transmission. We are interested in evaluating the steady state statistics of
the delay process {Dn}n>l' when they exist. Due to space limitations in
this paper, we give explicit results, only for the first moment of the delay
process. However, higher moments of the delay, as well as other yuantities of
interest can be computed, using the same method; {(the computation of the delay

variance for the third algorithm in this paper can be found in [12]).

3.1 Example 1 : Controlled ALOHA

The earliest and most well known RMAAs belong to the class of the ALUHA
techniques [14,6,19]. Here, we analyze a version of the slotted ALOHA

algorithm, that operates with each user transmitting a newly arrived packet,

in the first slot after its darrival. Should this cause a collision, each

involved user 1ndependently vetransmits 1ts packet in the next slot,




with probability f.

A packet whose transmission is unsuccessful is said to be blocked. Let M, be
the number of blocked packets at the beginning of slot i (time segment (1,i+l)).
This number will be referred to as the backlog size. Also, let R; denote the
number of blocked packets retransmitted in slot i, and N; denote the number of

new packets transmitted in slot i. Given M; = m, then clearly,

P(R,=r) B?(f) = (?) £F (1-£)07F 0,1,2,... (1)

P(Nj=n) = pp = ====== =0,1,2,... (2)

|
5
]

~
-

)

The delay process induced by the above algorithm "probabilistically
restarts itself” at the beginning of each slot T;, at which MTi =0, 1i=1,2,.0e;
this is so because the number of arrivals per slot is an i.i.d. sequence of
random variables. Precisely, let T4y = 1, and define T;,q as the first slot

after Ti at which MT_+1 = 0. The interval (Ti' Ti+1)' i=1,2,..., will be
i

referred to as the ith session.
Let Ri' i=1,2,..., denote the number of packets successfully transmitted

Ln the interval (0, Ti+1] (Note that Ri also represents the number of packets

- R.

arrived during the interval {0, T;-1)). Then, C. =R {01 = 12,000, 15

i i+1

P r'he

the number of packets successfully transmitted in the interval (T, Tiry!

sequence {Ri}i;1 is a renewal process, since 1(,} ;, is a seguence

of nonnegative 1.i.d. random variables. Furthermore, the delay process {ann’1

1S reygenerative with respect to the renewal process ile with regenera-

11’
tion cycle, C1.

From theorem 1, Wwith f(Di) =D we have that 1t ¢ = E(,, < °, and 1f

l'
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C.

1

s = E{ EDi} < », then, there exists a real number D, such that,
i=1

A

Olw

n 1 n
D= tim~ 20; = xim - E( D)) = E{Da} =
nre 0 =1 n*o 0

Thus, provided that both S and C are finite, the limiting average, the

limiting expected average, and the mean of the limiting distribution of {Dj};x1.

exist, coincide, and are finite; their common value D will be referred to as the

mean packet delay.

Next, we develop two systems of equations, whose solution .ay be used to
compute the mean cycle length C, and the mean cumulative delay S. The

properties and the computation of the solution will be postponed until section 4.

l.a Mean Cycle Length

If the mean session length H = E {Tj4+q ~ T;} , i » 1, is finite, then

by Wald's identity, we have that,

C = AH (3)

To determine H, we proceed as follows. Let h, denote the random number of
slots needed to return to zero backlog size, starting from a slot ] where the
backlog size is equal to i, i 2 0. By definition, then, 4 = £ (hy!. The

operation of the algorithm yields the following relation for the h;'s.

h, = { (d.a)
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$1+h-l i Ry f Ny =0
hy =41+ h . ¢ 1if Rj + Nj =1 (4.b)
i>0 l ]
1+ ni+Nj if Ry + 5 > 1

If we let Hy = E {hlj, i 2 0, then after taking expectations in (4) we obtain,

i i ¢k Hy (3)

where by = 1, 1 2 0, cgp = ¢gq = U, Coy = Pir ¥ % 2, Cjk = Pk-jr K > 1 + 1,

= -gi = -pl i = i
ci’ i+1 P,y (1 Bo(f)), Cii po(l B1(f)) + p1Bo(f), €i,i-1 POB1(f),

¢ix = 0¢ k < i-1, and where p,, B%(f), i 20, 0< j < i, are as defined in
(1), and (2), respectively.

Note that the mean session length H, can be computed from system (5), since

H=Hoo

l.b Mean Cumulative Delay

The mean cumulative delay, S', can be computed using a system of equations
similar to system (5). To develop such a system we proceed as follows. Let wj

denote the cumulative delay experienced by all the packets that were successfully

. 1 )
transmitted during h1 slots-( ) also, let W.l = E{wi}, i 2 0, and note that

-

S = Wge

The operation of the algorithm ylelds the following relations for the w,'s.

NJ if N = 0, or 1
w, T { (G.a)

(1) dere, for convenience, we count the delay of a4 packet, starting from
the bhejinatng of the farst slot after its drrival.
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‘ i+ Nj + Wy if Rj + NJ =0
Wi = i+ NJ + wi+N.-1 if RJ + NJ = 1 (6.b)
i>0 l J
i+Nj+wi"'N- if }S"NJ>’

After taking expectations in (6) we obtain

Wy (7)

where by = A , b! =i+ A, 1> 1, and ¢c;), are as defined in (5).
1 ik

3.2 Example 2 : The "0.487" Algorithm

This algorithm is the most efficient RMAA known to date, for the Poisson
infinite=-user population model and ternary feedback; (it allows a maximum
throughput of 0.487 packets per slot). It is assumed that at the end of
each slot i, the users receive a feedback z; = 0,1, or ¢, if in slot i there
were zero, one, or more than one packets transmitted.

The following is a brief description of the algorithm; for details,
motivation, and background discussions, the reader is referred to .[8], and
{18]}.

Suppose that at the beginning of slot v(time seygment (v,v+l]), all packets
that arrived pefore time t,, < v, have been successfully transmitted, and there
is no information coacerning the packets that may have arrived in the interval
[tv,v), (i.e., the distribution of the interarrival times of the packets in
[ty,v) is the same as the one assumed originally). The beginning of such a

slot v is called a "collision resolution instant". The time difference

d, = v - t,, will be referred to as the "lag at v". 1In slot v, the users
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that generated packets in the interval [tv, t, + Uv), where u, = min(dv, ay,
are allowed to transmit; A is a parameter to be properly chosen for throughput

maximization. In this case, we say that the interval ([ty, ty + Uy) is "trans-

mitted". Depending on the received feedback z the algorithm operates as

v’
follows:

If z, = 0, or 1, the transmitted interval is "resolved", and at time
v + 1 the resolution of another interval starts, where now t,, 4 = t, + Uyi
v + 1 is a new collision resolution instant.

If z, = ¢, the collision in the transmitted interval is resolved according

to the following steps:

1. The interval [t,., ty + Uv/2) is transmitted in slot v + 1.

1.1 If z,,q1 = c, the resolution of the interval (t,, t, + U,/2) starts
at v + 2 according to step 1, with t,,, = t,, and U,,, = U,/2. The
users in [t, + U,/2, t, + U,) stop participating in the collision
resolution process {(in this case we say that the interval
[ty + Uy/2, ty + Uy) "returns” to the unexamined portion of the
arrival axis).

1.2 1f zy4+] = 0, the resolution of the interval [ty + Uy/2, ty + Uy)
starts at v + 2 according to step 1, with t_ ,, = t, + U,/2, and
Uys2 = Uy/2.

1.3 If 2,4 = 1, the interval [tv + Uv/2, t, + Uv) is transmitted in
slot v + 2.

l.3.1 If 2443 = ¢, the resolution of the interval [ty + Uy/2, t, + Uy)

starts at v + 3 according to step 1, with t .4 = t, + U,/2, and

Uygse3 = Uy/2.
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1.3.2 1f Zy4p = 1, the originally transmitted interval has been resolved,
and the resolution of another interval starts at v + 2, with

ty+2 = ty + Uy/2; v + 2 is a new collision resolution instant.

For the analysis of the above algorithm, we need the following definitions:

§ : the length of the originally transmitted interval that is not
returned to the unexamined portion of the arrival axis; we
refer to § as the "examined portion of Uy"

L : the number of slots needed for the resolution of the interval
(tyr ty + &)

N : number of packets in O

w : sum of delays of the N packets, after the resolution process
of [ty, t, + Uy) begins

" : sum of delays of the N packets, until the instant t, + U,.

E{x|u} : conditional expectation of the random variable X, given that

Uy = u
Let {vi}i>1 be the sequence of successive collision resolution

instant$, and let d; be the lag at v It is known, (10}, that the seyuence

i.
idlii)1 15 a4 Markov chain, with state space, F a denumerable dense subset

of the 1interval I[l, ®). Let Ty =1, d1 = 1, and define T ¢q, as the first slot

after T;,at which dp = 1. From the description of the algorithm it can be
1+1

seen, after a little thought, that the induced delay process probabilistically
restarts itself at the beginning of each slot Ty, i = 1,2,... « Therefore,
using the notation and definitions of example 1, the mean packet delay D is

equal to 57C provided that both s and C are finite.
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2.a Mean Cycle Length

As in example 1, if the mean session length H = E{f;,q - T;} is
finite, then C = AH. To evaluate H we proceed as follows.
Let hyq denote the random number of slots needed to return to lag equal
to one, starting from a collision resolution instant vy with 4; = d. Note that,

by definition, h, is the session length. The operation of the algorithm yields

the following relations for the hy's, 4 ¢ F.

A if 2 =1

1<d<4d, hy= (8.a)
S+hg- 642 if £ 1

da> A ’ hd = 2'+hd-'6+2 (8.b)

Taking expectations in (8) yields:

1<da<a, Hg=E©8L|d + I p(r,s{d)Hy_r4g (3.a)
r,s
s#1

d> A, Hg=E2|a8} + ¢ p(r,s|d)Hg.r+s (9.b)
S,r

where p(r,s|x) is the joint conditional probability distribution of &, and
., at the point values r and s, given that the transmitted interval is of
length x. Note that,
-Ax .
(1+Ax)e if r = x

plr,lix) =
0 otherwise

System (9) can be written in the form

Hy = by + & cyqp He » aeT (10)
te
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where by = E{¢[d}, 1 < d <3, by = E{&|A}, d > 4, and where
Cggr 4/ t efF are nonnegative coefficients that can be appropriately identified

from (9). The conditional expectation E{%£|d}, 1 < d < A, can be computed

as shown in Appendix B.

2.b Mean Cumulative Delay

Let wg denote the cumulative delay experienced by all the packets that
were successfully transmited during hy slots. The operation of the algorithm

yields the following relation for the wy's, d €F.

w4y if £ =1
1 <4<4, wy = (10.a)
WHytwy_geg if £ > 1

W+ (d=A)N if &= 1
a4 38, wy= (10.b)
WHPH(d=B)N+wy_geq Aif £ > 1

Taking expectations in (10), yields:

1<a <8, wy=E{wla} + Elv]da} + £ p(s,r{d)wy_ (11l.a)
Yr,s

s#1

r+s

A > 8, Wy = Ele|dr +ELy[a) +(a=-VEIN] S + 2 p(s,r|d)wy.
S,r

r+s

{11.b)

System (11) can be written in the form

Wgq = bl + & "‘(;_t We o d v F (12)
{3
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where by=Elw|dt+Ely|a}, 1 « d < &4, by=Elw|a}+Elv|a} +(d-B)E(N|A},
and where the coefficients Cag s d, t ¢ F are as defined in (10). The
conditional expectations E{w|d}, E{y|d}, 1 < 4 < 4, and E{N|A} can be

computed as shown in Appendix B.

3. Example 3 : Stack Algorithm

A new trend towards the design of easy-to-implement RAAs, which combine
stability and good performance, with modest feedback requirements, started with
the introduction of the "stack" algorithm by Tsybakov and Vvedenskaya [9]. The

new class of algorithms has "limited feedback sensing" and "free access"

characteristics. Limited feedback sensing algorithms require that users sense

the feedback broadcast only while they have a packet to transmit, and, there-

fore, they have practical advantages over continuous feedback sensing algorithwms,

such as the algorithm in example 2. The "free access" characteristics of the

new algorithms simplify their implementation, since newly arrived packets are
transmitted in the first slot after their arrival.

The applicability of the proposed method to the analysis of algorithms
from this new class has been demonstrated in [12], where a representative

algorithm, called n-ary stack algoritrhm (SA,), has been analyzed. The

analysis presented in [1l2] is included here for reasons of completeness.

The SA, uses binary teedback of the "collision=No Collision" (C-NC) type;

that is, at the end of each slot, the users that .onitor the channel are

informed whether that slot contained a collision or not. Let zy denote the

binary feedback corresponding to slot k, where zy = NC, and z, = C represent

respectively a noncollision versus collision slot, k. Let some packet arrive

during slot k-1l. We then assune that the packet attempts transmission during
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indication at the beginning of

following set of rules.

Ix=1 and 2y =NC.

n 22.

At the beginning of each slot,
packet with Iy=m. Packets are
through the cells of the stack
shown in figure 1. To resolve

group of collided packets into

until successfully trnasmitted.

b) If zk=C, and Ik=1'

c) If z=C, and Ik>l,

The operational characteristics of the SA, are perhaps better explained by
introducing the concept of a "stack", as it was first done in [9]}. A stack is

an abstract storage device, consisting of an infinite number of cells, labelled

- AR N YN e e e e e

15

slot k, and it observes the feedback, z, and all the feedbacks after that,

We also assume that the packet has no know-

ledge of the channel feedback history, z;: i<k (limited feedback sensing). 1In

its effort to be transmitted successfully, the packet utilizes a counter, whose

slot k is denoted by Ik, and it applies the

l. A packet arrived during slot (k-1), sets Iy =1
2. A packet attempts transmission within slot k, if and only if, I, = 1.

The packet is successfully transmitted within slot k, if and only if,

3. The updating of the counter indication I, is done as follows.

a) If 2),=NC, and Ix 2, then, Ik+1=1k’1

then, Iy,1=J; where J is an integer random variable,

uniformly distributed on {1,2,...,n}, and n is an integer parameter,

then Ip4q=Ix+ -1

1,2,3... . The number of packets that a cell can accommodate 1s unrestricted.

k, the m-th cell of the stack contains the
eventually successfully transmitted after moving
in accordance with the rules defined above, as
conflicts, the algorithm splits uniformly the

the first cells of the stack. The i1nteger n
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is an algorithmic parameter, whose value may be chosen for performance
optimization.

The random access system operates with the SA, in sessions. A session is
a sequence of consecutive slots that begins and ends at two consecutive

algorithmic renewal instants, to be defined below. Those instants are denoted

by Ty, i # 1, and are determined by means of a renewal counter. The first

session begins at T4=1, with the renewal counter set to "2". Depending on the
channel outcomes, the renewal counter updates its indication in accordance with
rules 3.a, and 3.c. The second renewal instant, T, is the instant at which

the renewal counter drops to "1" for the first time; this signifies the end of
the first session. Immediately after T, the renewal counter is reset to "2",
and the second session begins. This process continues indefinitely, and defines
the successive sessions [T;, Tj4+q), 1=1,2,...

From the definition of the session given above, it can be easily seen that
immediately before the end of a session, all cells of the stack are empty of
packets, and that a new session begins with the group of new packets, that
arrived during the last slot of the previous session, placed in cell #l. Due to
the independent and stationary increments property of the arrival process the
session lengths Tj4+1~Ti, i=1,2,..., are positive i.i.d. random variables.
Furthermore, as in the previous two examples, the delay process iDi}1)1
1s regenerative with respect to the renewal process {Ri}1>1' with
regeneration cycle length, the number of packets successfully transumitted during
a session. Therefore, the mean packet delay D induced by the SA, is equal to s/C,

provided that both S and C are finite.

3.7 Mean Cycle Length

As in the previous examples, C = AH. To determine the mean session
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length, H, we proceed as follows. Let hi' i 2 0, denote the random length of
a session that begins with i packets in the first cell of the stack. After
a little thought, it can be seen that the dynamics of the SA, yield the
following relation for the hi's:

n

j=1 3 3

where N4, N5,...,N, are independent, Poisson random variables with parameter
A, which are also independent of the random variables I9s I, Teee, I,

which are multinomially distributed, with

i n
3 - ll 1 - 2 o -
p(I1=l1,uoc,In=ln) = T ----- T-- ; ’ 0 < lj < 1, 'Z lj =1
l1l-c-lnl J=1
If we define H; = E{h;} = E{h;|I=i}, then, after taking
expectations in (13), we obtain,
H0=H1=1
[- -]
Hi = bi + X cik Hk s 1 2 2 (14)

k=2

= i = i -1 i
where b, 1+¢4q tCigr i 2?2 Cixk = N(py«B(n"7)), i 20, k 20
and where Bi(’), P, are as defined in (1), and (2), respectively, and
+ signifies convolution.

The mean session length is yiven by

H = L pi Hi (15)
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3.2 Mean Cumulative Delay

PAR ORI

Let w; ; 1 # 0, denote the cumulative delay experienced by all the

LAY

packets successfully transmitted during a session that begins with i packets

in the first cell of the stack. The rules of the algorithm yield the following

relation for the wi's:

n
+ £ WI 4N ¢ i>1 (16)
where Ij, Nj, i € 3j £ n. are as defined in (13), and
n
Qj= ZIm,1<j<n-1
m=3j+1
Taking expectations in (16) yields the following system of equations for the

A
conditional mean cumulative delay W; = E{w;} = E{w;|1=1}, i > o0:

WO=0, W1—1
@

wi=bi+ chk ch i 2 (17)
k=2

where

" . n=2 1 2 i=j 5 (6} oy 1 L o
bi=bi({Hi}i p)=itc 4t & L ) Bj - | B¢ (--‘ Ppli-3~k)Hy el = 2,
¢=0 3=0 m=0 k=0 n-,

and where cik‘ Bi(-), pk, i 2, k 2 are as defined in (14), (1), and

(2), respectively.

The mean cumulative delay, S, is ygiven by

S = Lp; W (18)

.o E e e Yo 8 o 0",
S P A ‘ 1.":"J\)ﬂ-'~..t.f:'l:‘(:{ktkf A
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4. SYSTEM SOLUTION AND MEAN PACKET DELAY BOUNDS

In this section, we investigate the conditions under which the infinite
dimensional linear systems (5), (7), (10), (12), (14), and (17) have unique,
nonnegative solutions, and we develop upper and lower bounds on those solutions.
These bounds are then used to obtain bounds on the mean packet delay. We pro-

ceed, following the steps outlined in section 2.

4.1 step 1

For convenience, we rewrite an infinite linear system in an operator form.
Specifically, let £ be the space of sequences X = {x(v)}: A =R, where A
is a countable set. Also, let EL be the subspace of £ for which,

z |cuvx(v)| < ®, ueA
veA

We define the operator L = {Lu(x)}: EL, E, as follows.

L(x) =b L+ cl

x(v) ., UCA r X t EL
ved Y

e
In this notation, systems (5), (7), (10), (12), (14), and (17), can be written

in the form,
sl = L(sl), sb e EL (19)

We are interested in the existence and uniqueness of nonnegative points

sk ¢ gb,

that satisfy (19); such points will be referred to as fixed
points of L, and represent solutions to the corresponding infinite linear

system of equations. The guestion of unigueness of a fixed point SL, or

equivalently of the solution, tSL(i)}, to the systein that operator L
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represents, depends upon what conditions are imposed on the solution. Thus,

after the existence of a solution, {sL(i)}, has been established, one

has to indicate a class of sequences in which the solution is unique. If the

algorithmic sequences of interest {Hj}, or {W;j} belong to the indicated

class, then they must coincide with the solution {slL(i)}. (This will be

examined in Step 2).

Appendix A includes a number of results that can be used to establish

existence and uniqueness of a fixed point of an operator. Depending on the

operator, some are more straightforward to apply than others. Among the

results in Appendix A that can be used to establish existence of a solution,

Lemma A.2 is usually the most useful. According to Lemma A.2, to establish

existence of a nonnegative fixed point, SL, it suffices to find a point

x° ¢ EL, such that,

0 < L(x°) < x° (20)

A point X°, satisfying (20), also serves as an upper bound on sk. Further-

more, to establish a lower bound on SL, it suffices to find a point Y° ¢ EL,

such that,

Y® < L(Y°) < x° (21)

Thus, under (20) and (21), we have that,

ye « sk < xo (22)

We proceed now with the analysis of the systems developed in section 3.
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i 1. Controleld ALOHA

~ System (5) —-- Existence; System (5) corresponds to an operator L; with
.~ Ly Ly

S b, = by, cyy = Cyys H, Vv € Ny, where N, 1s the set of nonnegative integers,

and the b 's and c 's are as defined in (5). If we let XC = {x®(k)s with

uv

xC(k) = auk + du' k # 0, then by straightforward manipulations we have that, for

———

T
EAREP AN NS

this choice of X,, (20) is satisfied if and only if the following inegualities are

satisfied.

P A< & (E) - pBX(£) + pyBR(£), for every k 1 (23)

Gy 2 gup({-——==--- s k21 (24)

Bu 2 (L + ay(A - py))/(py + p1) (25)

It can be readily seen from (23) that if the retransmission probability f is
constant in every slot, then there is no A 2 0 for which (23) is satisfied.
If the retransmission probability f;, at each slot i, were allowed to depend
on the current backlog size, M;, in accordance to a stationary control policy
f = f(Mi), then it 1s of 1nterest to choose f( ) so that it maximizes the set

of A's for which inequality (23) is satisfied. This is eguivalent to

maximizing kx(f) with respect to f. It can be easily verified that, for

every k 2 1, ;k(f) 1s maxiaized tor f(k) = t*(k), where (2)

2. We should mention that, in a distributed environment, the backlog size
dependent retransmission probability f*(«) is nonimplementable, since
users are not aware of the current backloy size. However, the control
policy given by (26) can be implemented approximately by adaptive control
schemes that estimate the current backloy size using observable feedback
information from the past activity on the channel [6, 19, 20].
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1
E¥(k) = === , k 1 (26)
k=A
From this point on, we assume that f is chosen as in (26)}. Under this assumption,
inequality (23) is satisfied, provided that,

A < inf {gk(f*), k > 1} = e

To satisfy inequalities (24), and (25}, we choose,

1

Similarly, it is straightforward to show that if A < e~ then the point Y°

with y°(k) = a,k + 3., k 20, and

1 " 1-A 1 (28)
Q R . E wemem e 28
L 4 £
e"-A 1+A e'A—A

satifies (21). Thus, from (22) and for A < e 1

Ly Ly
a solution, S = (s (k)!}, such that

we have that system (5) has

Ly
0 < agk + 8 5 (k) €ak + by, k #0 (29)

where u,;, B, are as given by (27), and uy &y, are as given by (28).

L2

System (7) -- Existence: System (7) corresponds to an operator L, with b, = b,',

) '
Chuy = Cuyr ¥ » V £ No' where the bu's and cuv's are 215 defined in (7).

Due to the fact that bk is a linear function of k, and since
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it can be easily seen that there is no linear sequence x° = {x%(x)}

satisfying (20). However, given A < e'1, it is straightforward to show that

we can choose coefficients Yu' du’ ;u, Yl' 62, ;2 such that the point X° with

2

x%(k) = r,k? + 8.k + ¢, k >0, and the point YO with yO(k) = 6,k? + &, + ¢,

k # 0, satisfy (20), and (21), respectively. The following is such a choice:

. MY (A2+A+e~1) 147 (L+r=e~2)+5 (1-e~?)
u u u
Yy = ~===~===- ’ Gu e it ' Cu = A memmee e e
2(e=1-1) e-1-A (14A)e=A
(30)
2 -A Y -A
1 MY g (A2+d+e ™ (1-21)) L+Yy(1+A-e )+62(1—e )
Y = ecmcee—— v 52 = mmmem—c——— ————————— CR, = A memmeccccmm— e ——— e
2(e=A-1) e=A-A (1+A)e—A
(31)
Ly La
Then, if A < e~1, then system (7) has a solution 8 = {s (k)} , such that,
L

‘ 2 .
0 < vgk? + 8k + gy €5 (k) <6 kZ Sk +C, .k 20 (32)
where Y, ﬁu, ¢y, are as given by (30), and Yy, 8y, ¢y are as given by (31).

Systems (5) and (7) -- Uniqueness

L
1
We will show that both the solution {s (i)} of system (5) and the
L
2
solution {s (i)} of system (7) are unique in the class

E; = ¢ X 1 sup =====- < =
. )
leo 1L°+cC

where c is a positive constant.

We start with system (7). Since L, 1s majorant ot 1tself, from theorem A.1l,
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we have that L, has a principal fixed point S, , such that 0 < S, <3S
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Ly Ly Ly

Ly

According to theorem A.2, the fixed point S is unique in the class,

Ly
E* = X
Lo
o
provided that Y° ¢ E, .
L2

in E,, if we show that E.
that,
and

Ly Ly

Since 0 < s (i) < g

holds, we use the power sequence, {Sn }n>1' of L, with initial point 0.

|x(i)]
: sup === <2 (.
ieN 2
le] S,

Ly

since, by definition, ¥° ¢ £,, s will be unique

= E5. According to lemma A.1, it suffices to show

L
s« (1)
sSup « ====-- < = (33)
ieN_ i2+c
)
sax (1)
inf  emec—e- > 0 (34)
ieN i2+¢

(1), (33) follows from (32). To show that (34)
La

By

L
definition (see Appendix A), sn2 is the point that results after L, operates n
Ly Ly Ly
times on the zero point, (i.e., S, = L3(0)), and S, * Sy , as n > ® . Due
Ly L2
to the fact that b; >0, Cik <0, 1, k € No, we have that 0 < s, (1) ¢

Ly Ly

Sn+1{i) € s« (i), for every n 21, i 2 0.

Also, it can be readily shown by

induction that, for every i1 21, n # 1,

s, (1) 2 ni - n(n-1)/2 (35)




From (35) we obtain,

L Ly
. . 2, .
s« (1) s; (1) 1 i+
Lim inf ===--- ? Lim inf ------ 2 = eme— = - (36)

i i2+¢ i+ i2+c 2 j2¢¢c 2

L2
(34) follows from (36), and the fact that s« (i) > 0, i 2 0.

L
1

The uniqueness in E, of the solution {s (i)} of system (5) follows
from theorem A.4, part (ii), after one identifies L, with 02 and L, with 01,

in the theorem.

2. The "0.487" Algorithm

System (10) -- Existence and Initial Bounds

L4 L4
System (10) corresponds to an operator L, with bu = bu ¢ CuV = Cpye

#, v € F, where the b,'s and c,,'s are as defined in (10). To
establish the existence of a nonnegative solution to system (10), we follow
the same procedure as in system (5).

)

Let X° = {x°(d)} with x(d) = o,d + B,, 4 €F , and let X' = L(X

After straightforward manipulations, we obtain,
x'(d)=x°(d)+E(2[d}+0u(E{£|d}—E{S|d}-(1+Ad)e'Ad-Bu(1+Xd)e_xd , 1 <d<A
(37.a)
x'(d) = x%(d) + E{&|a} - o (E{8]A} - E{2|a}), a > & (37.b)

According to Lemma A.2, to establish the existence of a nonnegative fixed point

of Ly, it suffices to show that there exist Uyr Bye such that,

0 < x'(d) € x°(d) , for every d ¢ F (38)




———

.7,

From (37.b), we see that this is possible only if

E{6]|a} > E{2]4} (39)

If (39) nholds, then it can be readily seen from (37) that (38) is satisfied, if

we choose &,, B, as follows:

= erecccccecce——e— 40.a)
%a = ET8]al - E(2]8] (40-2

je
]

max{- a,, sup (p(d))} (40.b)
1<a<a

where

{2 |a} + o (E{2]a} - E{§]a} - (1+Ad)exp(-Ad))
p(d) =

(1+Ad)exp(=-Ad)

The conditional expectations appearing in the above expressions can be computed
as shown in Appendix B.

Similarly, it can be shown that, under (39), the point Y° = {yo(d)!
with y®(d) = a,d + 52' d € F satisfies the inequality Y° < L(Y®) < X©°,

if @y and By are chosen as follows:

Ap = a Bg = inf ( w(d)) (41)

1<d4<A

u !

where a,, #p(d) are as given by (40).

Thus, if (39) holds, then from lemma A.2 we have that system (10) has a
Ly
nonnegative solution S + such that,

L
1
agd + 8y €5 (d) S uayd + B8, ,d: F (42)
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where «,, B,, and @y, By are as given by (40) and (41), respectively.

System (12) -- Existence and Initial Bounds

Let L, be the operator that corresponds to system (12). Also, let
X% = {x°(d)} with x°(d) = v d? + 6, + ¢,» d €F , and ¥° = {y°(d)} with
yo(d) = Ygdz + Gld + CE , d € F-

Following the same procedure as for system (10), we can show that if (39)

P

)

L L
2 2
holds, then system (12) has a nonnegative solution S = {s (d)}, 4 € F,
such that,
2 L2 2
ygd© + sz + ¢y <5 (d) < y,d° 4+ Gud + 4y (43)
where,
=y E{N| A}
u T T (R(8]aY - E(2[4})
E{w|a} + E{¥[a} - o E(N[&} + v, E{(6-22]|a}
Gu = 62 ISt i e o e s s D Y B D D s e
e{é|a} - E{2]a}
Gy = sup (¢(d)) , 65 = inf (¢(d))
1<d<a 1<d<a
2 . =AA -Ad
slw|at+elv]aley (E{(8-2)%|a}-2dE{s-L|a}-(1+Ad)e " )-8 (E{8-L|d}~(1+Ad)e
P(A) = e e e e

(L+)d)e~Ad

The conditional expectations in the above expressions can be computed as

shown in Appendix B.
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Remark It is known [7] that inequality (39) is satisified if A < A (8);

) where A (A) is maximized for 4 = 2.6, and Ay (2.6) = 0.4871.
\
\
Systems (10) and (12) -- Uniqueness
. We will show that both systems (10) and (12) have unigue solutions in the
- class
. |x(d) |
. Ey =4¢X s sup —-==== ¢ = (44)
) acF a2
s As in the case of systems (7) and (9) in example 1, if we show uniqueness for
system (12), then the uniqueness for system (10) follows from theorem A.4,
part (ii).
Ly
s According to theorem A.2, the fixed point S is unique in the class
- ELZ |x(d)l }
. # =4¢X :t sup =~—<=—- ¢ @
X aeF SLZ
*
: Ly L2
g provided that Y ¢ E, . sSince, by construction, Y° € E,, § will be
. Lz
e unigue in EZ' if Ex = EZ' To show that the latter equation holds, we proceed
N
> as follows.
j: Let §, = LS(O), where Lg(o) is the n-th power of the operator L,, acting
; on the zero point. Clearly,
L,
N sj(d) = by € > 0, for every d € F (45)
~
%
“ Also, it can be easily shown by induction that,
A
. n(n=1) '
s sp(d)=n((d-A)E{N|A}+E{w|A}+E{v|L})- ---5--(E{5|A}-EHIA})E\NlA}
N

(46)
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for every d € F, n # 1, such that d > nA . For 4 > 24, letting(3)
a d d .
n =(-- J -~ 1 in (46), and using the fact that t - l > - -1, yields,
A A A
s (d) >ud 2 4 3a+v,d> 28 (47)
where a > 0. (The expressions for the coefficients «, 8, Y are not of
interest and, therefore, are omitted).

L
2
If S. is the principal solution of Ly, then from theorem A.1 we have,

Lo
Se (d) 2s,(d) 30, foreverydefF , n 31 (48)

From (45) and (48) we have that,

L
2
se (d) 2¢€ > 0, for every d € F (49)

From (47) and (49) we conclude that,

Ly
sx (4)
7Y J—— >0 (50)
de F g2
Ly Ly

From (43), and the fact that S« € S , we have,

L
Se (d)
sSup ~—e=-- < = (51)
aeF a2
Ly
Finally, from (50), (51), and lemma A.1 we have that E. = Ez

3. LaJ denotes the maximum integer not exceeding a.
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3. Stack Algortihms

System (14) -- Existence and Initial Bounds

L L
1 1
System (14) corresponds to an operator Ly with b, = by, cuy = cuy,

W 22, v 22, where the bu's and c“v's are as defined in (14). Let
X0 = {x%(k)} with x°(k) = ok + Byr X 22, and let YO = {y°(x)} with
yo(k) = agk + 8gs k > 2. Then, by straightforward manipulations (see [12]

for details) we can show that (20), and (21) are satisfied (with Ly = L) if

A
3, 2 172
A< Xo(n) = ((8n =-7n“+2n+1) - 3n+1)/(2n(n-1)) (52)
a; = n(l4n+A(n-1))/(2(n=1-nA)=A(n=1) (1+An)),8,, = (1+nia,)/(n-1) (53)
ag = n/(n=-1-n}) , By = (l+nagd)/(n-1) (54)

Ly
Thus, if A < Xo(n), then system (14) has a solution S , such that

L4
0 € agk + 8g €s (k) Sapk +8,,k 22 (55)
Where a,, B, are as given by (53), and ag, By are as given by (54).
We note that Ao(n) attains a maximum at n = 3, with Ao(3) = 0.3874.
System (14) -~ Uniqueness:

L L
1 1
We will show that S is unique in the class E, CE , which is defined

as follows,
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gq(k) = k2 + uk +u, . k 32 (56)

and the coefficients u;, u, are chosen so as to satisfy the conditions stated
in the theorem.
Conditions (a) and (c) are obviously satisfied for any uj, uj;. To satisfy

conditions (b), (d), and (e), it suffices to choose u,, u, so that,

o

gq(i) > 0, and G4(i) > 0 , for every i 22 (57)
where,
A [
Gq(i) = gq(i) -k£201k91(k)=h(i)+Ci1+(Ci1‘nA)u1+(Cio+ci1-n+1)uzci 2 (58)

and

1 1
h(i) = (1L = =)i2 = (1 = = = 2A)i - nA(1+X) , i > 2
n n

Given A < A (n), then it is straightforward to show that there exist u,,

u, that satisfy (57). The following choice is adopted from ([12]:
uq = max{-1, (hy/(n=1)+v/(nA/(n=1)=v)}+ 1, uy = (uy+l)v (59)
where v = (A(n=1)+2)/((1+A)(n=-1)+2).

With uy, u, chosen as above, it is clear from (55) and (57) that condition

Ly
(e) is satisfied. Thus, S is the unigque solution of system (14) in the class
L L
1 1
Eg1 CE , which is defined as follows,
L, |%(1) |
Eg = X : SUp ~-—=—~ececca-- o
1
L,
s (i)+gq(i)
Ly
Finally, from lemma A.1 we, have that E, = E,.
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System (17) -- Existence and Initial Bounds

In section 4.2, we will show that the sequence of the conditional mean
session lengths, {Hi}iwa' coincides with the soluton sL1 of system
(14), if this solution exists, (i.e., if A < Ao(n)). With this in mind,

L, Ly Ly

system (17) corresponds to an operator L, with b“ = bu'(s ), Cuv = Cpuyr
u 22, v 22, where the bu'(')'s and cuv's are as defined in (17).

Let x° = {x°(x)} with x®(k) = v, g4(k), k > 2, where g (k) is as
defined in (56) and Y, is a positive real.

Given X < Ao(n), we choose Y, so that x° 3 L1(x°) > 0, or equivalently,

L @0
1
Yo 91(4) 2BLS )+ T i Yy gq(k) 20, 1

\!
N

(60)

L
1
From (55) we have that bi(sS ) < bj({ax+8,}, ), i 22, thus, (60)

holds if, for every i 7 2, we have,
gq(i) > 0 , v, Gy(i) > b} ({ogk+Byly ) , 1 22 (61)

where Gq9(i) is as given by (58).
With uy, Uy chosen as in (59), it follows from (58) that inequalities (61) are
satisfied if,

bi( {uuk"'lju} )k ;2)
Yy = sup —mmte 2 K2 (62)

(it can be readily shown that 0 < Yy € ®)e

Thus, from lemma A.2, we have that if A « Ao(n), then system (17) has a
Lp
solution S such that,
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L,

0<s (1) Sy a2 s i, 1002 (63)

where du = ug Yy¢ &y = Yy Yy, and where uy, u, are as given by (59) and Y,
is given by (62).

Using similar arguments, one can readily establish the following lower
L,
bounds on S :

L2
0 <vgiZ+ 6 i+ CpSs (i), 1 52 (64)

where,

bi((ﬂzk*ﬁl}k ;2) _
Yg = inf  —mmmmiollt S s =6y, gy (65)

and where ay , 8y are as given by (54).

System (17) == Uniqueness

In thoerem A.3, let Oy = Ly, O, =L,, and g(i) = vyi 2 + 6 i+ ¢, 1 32,

where Yur Gu, ¢, are as given in (63). Then, all conditions in the theorem
L
are satisfied. Thus, S is unique in the class,

L, [x(1) ]
Eg =¢ X : SUp =——=————=--= < ®
Ly
s (i)+g(i)
L4
It is clear from (55) and lemma A.1 that Eg = E,, where the class E; is as

defined in the proof of uniqueness for system (14).

4.2 Step 2

In step 1, we have established conditions for the existence of nonnegative

solutions to the systems of interest, and we have identified classes of

PEPR AR WL LA TR
Ay 'J‘"‘" oS-
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sequences in which these solutions are unique. Here, we show that the algorithmic
sequences {H;}, {W;}, where H; = E {h;} and w; = E {w;}, belong to the
corresponding identified class, and therefore, coincide with the unique solution
in the class. The proof is based on theorem A.6, and is the same for all three
algorithms.

For the case of the sequence {H;}, let, in theorem A.6, L = Ly,

xi = hi' and x? = min(hi, n), n=1,2,3,... . By definition, the xi's and

x?'s satisfy condition (a) in the theorem. OCondition (b) follows from the

fact that x? € n a.e. . Finally, condition (c) follows from the operation
Lj
of the algorithm. Thus, {H;} =5 .
L
Similarly, to show that {wi} =S , we apply theorem A.6, with L = L,,

X; = w;. and x? = min(w;, n), n = 1,2,3,... .
4.3 Step 3

In step 1, we have already found upper and lower bounds, x° and Yo,
respectively, on the solutions to the systems of interest. These bounds
can be improved either by computing the power sequences of the corresponding
operators with initial points the bounds x° and YO, (lemma A.2), or by solving
finite systems of linear equations that are truncations of the original in-
finite systems, (theorem A.5). Both methods can provide arbitrarily tight
upper and lower bounds. We use the first method in the "0.487" algorithm,

and the second method in the controlled ALOHA and the n-ary stack algorithm.

1. OControlled ALOHA

For system (5), we apply theorem A.5 with L = L, and,
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Ly
u (i) = ayi + By , i€ Ng

Ly
L (1) = agi + By r 1 E Ny
Dj = {0,1,2...,3} , 5 e Ny

;where a_, B

a and ag, By are as given by (27) and (28), respectively. Note

ul
that, for given , Qj is a finite set and, therefore, all conditions in the theorem

are satisfied. Thus, for X\ < e-1,

®5 L, 0;
s (1) SHy =s (i) <8 (i) , 0 S i < j

C]

. ¢
J
where {s “(i)lg¢i¢y and {s

3
(i)}g¢icj are the unique solutions of

the (j+1)-dimensional systems (66) and (67), respectively.

w 9% 3 T
k=0
OF J Lj
g _ .73 ) ) . .
Hf =Db, + I cix Hy 10 € i <3 (67)
k=0
where bi ’ bi are as defined in the theorem with Py = 0; = bi 0 €1 < 3.

therein. We solved systems (66) and (67) for j = 50. The resulted upper bound
Hg and lower bound Hﬁ on the mean session length Ho, can be found in table 1,

1

for different values of A, (A < e '). For system (7) we followed the procedure

described above with,

u (i) = ¢, i+ 6 i + ¢

Py = Uy = bi PR S Dj = t0111200"1j} ¢ J € NO

- P A S N A
A AN A P AN ., .
PR i Sl W AL T %Y G W, PR R LY At el o
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ii where Yar du' 5, are as given by (30), and Yy, oy, 4y are as given by (31). The

- resulting bounds wg, w§ on the mean cumulative dealy wo are included in table 1;

they were computed using j = 50. From the regeneration theorem and (3) we have(4),

. WQ
". D= =-=--+0 5 (6&3)

XHO

The upper bound DY = wg/(kﬂg) + 0.5, and the lower bound D¥ = wg/(AHg)+0.5

- on D are included in table 1. Note that, according to theorem A.5, arbitrarily

tight bounds can be obtained by increasing j. From a theoretical view point the

P
4"!'»"

bounds become exact as j * *.

2. The "0.487" Algorithm

L
1
From section 4.2 we have that, for A < 0.487, Hg =s (d), d ¢ F, and
Ly Ly Ly
Wg=s (4), 4 ¢ F, where S and S are the fixed points identified in

section 4.1. According to Lemma A.2 we have that,

LR I
PR

.
.

Ly
LY¥P <s  <nfxN , n=1,2,..., acF (69)

L
2
Lg(y2°) <s < Lg(xg) , N=1,2,+0., 4 € F (70)

NI AE)
N
LI

o a o
where X§ {aud + Su} g ¢ Fr Yy

{“gd + sz}

d e F

o . 2 ) O = 2
X3 {Yu dc + o, a+ Cu} ae Fr ¥ {Yu as + 6u a+ Qu} d ¢ F

;t and where g, B, &y, Bg, Yo, Oy, 4yg, Yur 6u' -, are as given by (4y), (41), and
(43). For n =1, and d = 1, (69) yields the following bounds on the mean session
. length Hy:

£ u
. H1 < H1 < H1

4. The additional 0.5 units of time represent the mean delay of a packet, until
the beginning of the first slot following its arrival. (See footnote 1).
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where

HI=E{R|1} + a (1-(1+h)e™ +E{2|1}-E{S|1})+8,(1-(21+h)e 1)

-A
H = wd - (8, - By (1-(he™h

The above bounds can be found in table 2, for different values of A, ( A < 0.487).

For n = 1, and 4 1, (70) yields the following bounds on the mean cumulative delay

over a session Wjy:

£ u
Wyo S Wy <wWy

where
W= {0 [ 11+ (0| 13+, (1-(1+0)e " +E{B-42| 1} -28{6-A| 1}

+ 8, (1=(1+M)e™> —E{8-A|1})+g (1-(1+X)e™)

wh = WY —(g-gy) (1-(1+h)e™H)

The bounds w% and wﬁ are included in table 2. From the regeneration theorem

we have D wl/(XH1). The upper bound DY = w?/(AH1£), and the lower

bound Dz

W% /(XH%) on the mean packet delay D are included in table 2,
and are plotted in figure 2.

Finally, we note that tighter bounds can be obtained either by evaluating the
bounds given by (69) and (70) for higher values of n, or by the method of truncated
systems used in the previous example. In both methods, however, we must first
compute the conditional probabilities p(6,2|x) defined in (9), which is a
computationally complex task. Note that for the found bounds, (i.e., for n = 1 in

(69) and (70)), such a computation is not required.

}J. n-ary Stack Algorithm

For system (14), we apply theorem A.5 with L = L4y and




L
. u (1) = a i+ By 1 22
Ly
2 (i) = ag i+ By e i 22
DJ = {2,3,ooo,j} e ) s 2
Ly
- where a,s By and ag, By are as given by (53) and (54), respectively. As in the
. . . .
J
case of the ALOHA algorithm, the fixed points S and S s in theorem A.5,

are obtained by solviﬂg two (j-1)-dimensional systems of linear equations. If we
o, 0.
J
denote s J(i) by Hf, i »2, and 8 (i) by ug, i 2 2, then using (15) and

(55) we obtain,

gt < m < u®
/ where
-
: Py .
- H = p, + py + L p; Hy + L py(ayi + 8,)
3 i=2 i=j+1
L ] L %
H™ = p, + py + L pj Hy + L pilag i+ By)
. i=2 i=j+1
3 In table 3, we give the bounds Hu, H2 for different values of A in the
interval (0, Xo(n)), and for n = 2,3..., where Ao(n) is as given by (52);

) these bounds were computed using j = 15. For system (17), we use theorem A.5
; with L = Ly, and

L2
. . .2 . N
: u (i) = Yai® + o i+ ¢ o 1 22
. L,

2 . .

L (i)=Yzi "’621"‘(,1 o 1 22

- L
2

. _ o R
A L,
. 01=bi([Q,‘(l}kX)) e 1 22
I L R T R APCI L T . st e '.-"-'.“ CIR Y ‘---‘..". '_.-' "_."'..' 2T T . ."_..'..-' e e '.-" » ‘_-.‘ L"‘»' AT ‘.-A‘_-“' -A'_-“ A
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where

Yur Sus Gur Yoo 8y, Gy are as given in (62), (63), (65),

L
2
b; (-) = bi(-), with bj(-) as defined in (17)
L . .
Q§=Q1=1PQK=H)’::2‘k<J;Q£'=0-lk+t$2,k>J+1
Q.2=Q‘;=1:Qﬁ=ﬂﬁ.2<k<j:Q{:=a“k+Bu,k>j+1

3 03

As in the case of system (14), the fixed points S and S , in theorem A.S5, are

obtained by solving the corresponding (j-1)-dimensional systems of linear equations.

. O,

J
If we denote s (i) by Wf, i 22, and s ?i) by wiu, i 2 2, then using (18),
(63), and (64) we obtain the following bounds on the mean cumulative delay over a

session, S:

st <s <y
where
J oo
u _ u s 2 ;
s Py + z Py W] +. ? py(Y,ic + 5u1 + 6y)
=2 i=j+1
% . L,
- .2 .
s Py +.Z py Wi + r pi(Yil + 621 + gz)
i=2 i=j+1
The bounds sY, Sl that correspond to j = 15 are included in table 3. From
the regeneration theorem we have(4) p = S/(AH) + 0.5. The upper bound
DY = s¥/(Au%) + 0.5, and the lower bound p% = Sz/(AH“) + 0.5 on the
mean packet delay D are included in table 3. The bounds for n = 3 are also
plotted in figure 2. From the table we see that bounds found with j = 15
practically coincide even for A close to Ag(n). (According to theorem A.5,

DY » p ag j » w),
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Finally, note that the algorithm with n = 3 has uniformly better mean delay
characteristics, as compared to the algorithm with n = 2. From the operation of the
algorithm and the fact that the quantity Ao(n) decreases monotonically for n 24,

we have every reason to believe that n = 3 is the best choice among all n.

5. CONCLUSIONS AND PRIOR WORK

In this paper we have introduced a method for the delay analysis of RMAAS, in
which the induced packet delay process is regenerative, and we have demonstrated
its wide applicability by applying it to three specific examples. The method is
based on a well known result from the theory of regenerative processes, which relates
the asymptotic statistics of such processes to quantities that refer only to one
cycle of the process. The per cycle quantities, (e.g., mean cycle length, expectatio
of the sum of the values of the process over a cycle), are evaluated from the
solution of infinite dimensional systems of linear equations. In Appendix A, we
have given a number of general results concerning the existence, uniqueness and
approximation of the solution of such systems, which are of independent interest.
Most of these results are generalizations and extensions of results that can be
found in the early reference [21].

In applying the method to the three example-algorithms, we have put emphasis
on the methodology and rigorous derivations rather than finding short cuts in the
analysis of a particular algorithm. In doing so, the essential simplicity of the
method may have been obscured. However, to appreciate the simplicity of the method,

we note that only by using Lemma A.2, one can obtain with minimal effort:

1) A lower bound on the maximum input rate that an algorithm maintains with
finite delay, (i.e., a lower bound on the maximum stable throughput induced
by the algorithm). Note that for the first two examples of this paper, the
found bound coincides with the maximum stable throughput; for the third
example, the found bound is very close to the maximum stable throughput
(12], and since the induced delays are already at very high values, deter-
mining the exact maximum stable throughput is of theoretical interest only.
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2) Optimal algorithmic parameter choices (e.g., the retransmission proba-
bility policy in the ALOHA algorithm, the window size &4 in the "0.487"
algorithm, the splitting parameter n in the stack algorithm).

3) 1Initial bounds on the mean packet delay, that can be used (if so desired)
to form finite linear systems, whose solution can yield arbitrarily tight
bounds on the mean packet delay.

In this paper, we have given explicit results, only for the mean packet delay,
when the cumulative packet arrival process is Poisson. These results can be
readily extended to the case of an arbitrary memoryless arrival process, as long
as the regenerative character of the delay process is preserved. Moreover, the
method can be used to compute higher moments of the delay process. This is due

to the fact that if f(x) = xn, n 2 1, in theorem 1, then the resulting per cycle

quantities are again related to the solution of the infinite linear systems [12].

A, e Y,

Thus, the results in Appendix A are applicable.

The algorithms that served as examples in this paper, have been analyzed in a
number of studies. From the literature on ALOHA-~type algorithms, we mention the
work in [6], where the stability properties of the version of the Controlled ALOHA
algorithm considered here have been studied, using a Markovian model. The optimal
retransmission policy was derived in [6] using Pake's lemma, but the delay analysis
problem was not addressed.

The delay characteristics of the "0.487" algorithm have been studied in [10],
using a different approach. 1In contrast to the method in [10], the method proposed
here does not require the computation of steady-state probabilities of the under-
lying Markov chain and, therefore, it is computationally simpler. Furthermore,
since our approach is based on the asymptotic properties of regenerative processes,
it yields stronger convergence results.

The delay analysis method of this paper was first applied to the n-ary stack

algorithm in [12]). The analysis in [12] was stimulated by the approach taken in

I T R N T L T R T PR SR L AR o AL AN
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- [11], where the delay characteristics of the n = 2 algorithm were evaluated,

i using the regenerative formulation used in this paper, in conjuction with the

i solution of a functional equation. The n = 2 algorithm has also been analyzed

N in [13], where a Markovian model is adopted, in conjuction with the solution to

:E infinite linear systems. We believe that the method proposed here is simpler

5 than both of the above methods. Finally, we note that the study of infinite
linear systems, in conjuction with the throughput analysis of the stack algorithm,

; was initiated in [9].

;
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u u u
Ho Ho Wo No D D
0.05 1.00547 1.00547 0.05789 0.05789 1.651631 1.651631
0.10 1.02463 1.02463 0.141334 0.141334 1.87936 1.87936
0.15 1.06445 1.06445 0.27824 0.27824 2.24265 2.24265
0.20 1.14015 1.14015 0.54174 0.54174 2.87576 2.87576
0.25 1.29097 1.29097 1.17832 1.17832 4.15097 4.15097
0.30 1.66015 1.66015 3.52360 3.52360 7.57485 7.57485
0.35 3.65080 3.69063 38.27660 41.89753 80.13219 33.28928
Table 1
Delays for the (ontrolled ALOHA
u u {' u
H1 Hl Wl Wl D D
.01 1.00025 1.0003 015258 «015258 1.5253 1.5255
.05 1.00395 1.00474 .08234 082346 1.6348 1.6388
o1 1.025 1.030 « 18503 . 1859 1.796 1.8130
<15 1.060 1.061 «3212 3245 2.000 2.040
.2 1. 1167 1. 11367 <5162 5254 2.270 2.352
«25 1.2069 1.240 8243 8468 2.66 2.80
«3 1.356 1.408 1.381 1.434 3.270 3.525
«35 1.627 1.710 2.6088 2.7423 4.358 4.8151
<40 2.2279 2.374 6.6438 6.8603 6.779 7.670
«45 4.487 4.8536 35.012 37.871 16.030 18.754
47 92.110 9.916 163.698 178.178 35.125 41.613
48 21.175 23.122 944.35 1031.12 85.086 101.452
Table 2

Delays for the "0.487" Algorithm
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n=2 n=3
H* H b b H* o p* D
0.05 | 1.00565 1.684 04 1.00619 1.67669
0.10 | 1.02622 1.96913 1.02788 1.92764
0.15 | 1.07113 2.44552 1.07265 2.30451
- 0.20 | 1.16167 3.33212 1.15587 2.91389
0.25 | 1.35801 5.29176 1.31346 4.01133
S 0.30 | 1.92055 11. 38280 1.65242 6.37571
0.35 | 8.22892 87.28995 2.69508 13.87780
- Table 3

Delays for the SA; and the SAj
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- the stack
cell # 3 X; X4 //e stac
X3
T 9
: X
cell # 3 X3 » Kn
-7 : > ells
cell # 2 X2 .- ) : ) ne
cell # 1 X=k>l fefem——————— > KN
7 I—_" Y a packet
| — ™ arrival
' t A _ ¢
1 Collision i+l
X3 X4
X2 X3
Xo4+N
X1=0orl r——’ 2
i i
H -~ A - H
1 4 1
i i+1
Idle or Success
Figure 1 Illustration of the rules of the algorithm using the stack. X; denotes

the number of packet in cell #j, at the beginning of the i-th slot; N
denotes the number of new arrivals during the i-th slot, and
K1+K2+ +K.n-|(_>_2.
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APPENDIX A

We present, in a generalized format, some basic results regarding the
approximate computation of solutions of infinite dimensionality linear systems

[21). Let A be a denumerable set of indices, and let £ be the space of sequences

X = I{x(k)}: A » R. Given a set { cgksR, b? €R,i,ktA }, let E be the subspace
of E defined as follows: EL = {x: £ |c§kx(k)|< © yieA }. We define an operator
k€A

L : EL > E as follows: y(i) = L;(X) = bf + L CgkX(k) 1 €A xeEY A point
keA
sl ¢fL, such that,

L

st = (st (A1)

is called a fixed point of the operator L. (A.1) represents an infinite system of

linear equations and a fixed point is a solution to this system. Given an operator
o

L, we define its n=-th power L™ as follows: L‘(Xo) = L(xo), Ln+1

4 n
(X,) = L(L (Xo)),
n=1,2,..., provided that xo SEL, and L“(xo) €EL, for every n # 1. The sequence

A
{x,} = {L“(xo)}, n=1,2,... is called the power sequence of L, with initial

point X . A fixed point of L that is a pointwise limit of the power sequence of L,

with 1nitial point X, - 0, 1s called a principal fixed point of L, and is denoted by

SE. An operator U: EY »E 1s called a majorant of L, iff,

L, . .J
lefki ~ ek Lk A

bkl « o7 1oe A
i i

In this case, L is called a minorant of JU. The notation X < X', X ~ X', x,x'l»;E
means that x(k) < x'(k), (x(k) € x"(k)), k tA . A point X cf is called positive

{nonnegative) iff, 0 < X (U € X). By |X| we denote the sequence defined by
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[x] (k) = ix(k)|, k £ A. Theorems Al, A2 below are essentially theorems I, II g 2

-
Ay .

of [21}. They relate the existence and unigqueness of a fixed point of L, to the

existence of a fixed point of a majorant U of L.

Theorem A.1 If U 1s a majorant of L, and U has a nonnegative fixed point SU,
. e ; . v L Ly ¢ gU v

then both ©U and L have principal fixed points SJ, S;. Moreover, 0 ¢ IS*| $ S, ¢S
Theorem A.2 If U is a majorant of L, and O has a nonnegative fixed point SU,

then the principal fixed point SE of L is unique in the class 59 CZEL, defined as

follows.

iEA S*(i)

L . : . L . s .
Furthermore, Sy is the pointwise limit of any power sequence of L, with initial point

S|

any point in E_.

Theorem A.3 below relates the existence and unigqueness of a fixed point of L,
to the existence of a fixed point of a majorant U of L, and it is a consequence of th
theory of regular systems [21]. Its difference from theorems A1, A2, lies in the fact
. . . v} V)
that, under the stated assumptions in it, we have, S = Ss.
Theorem A.3 If . is a majorant of L, and . has a Eositlve fixed point SU,

such that,

then S, = S°. Therefore, theorem A.2 holds with S: replaced by So.
* P

(1) We adopt the convention:

0 a
- = 1 - W a > ()
0 '0 L4




The following theorem relates the existence and uniqueness of a fixed point

of some operator 02, to the existence and unigueness of such a point for another

operator 01, where the latter 1s not necessarily a majorant of the former.

) Theorem A.4 Let 0, 0,, be two operators such that,
¢ -
5 01 02 01
- (a) cjx * lejk] ¥ ik €A, by € [0,2),¥i cA
3 (1) If 01 has a fixed point S , and there exists a sequence g:A* R, such that,
01
(b) g+ 58 20
0
(c) L lejk alk)| < »=,wi € A
keA
0, 04 01
(d) |by | < (by + g(i) = I ¢y g(k)) M, Vi €A , for some M > 0.

keA
Then,0, has a fixed point.
(ii) If (a), (b), (4) hold, for g = 0, then the solution of 02 is unique in the

0, 04

class Ex , where Ex is as defined in Th. A.2.

(iii) If in addition to (u), (b), (d), we have that,

0, 04
bj +g(i)= L cjRg(k)
04 kcA
(e) g + 8 > 0, and 1nf ~e=-c---ocecomm—mao- > 0,
icA 01
s  (1)+yg(1)
0, 0y 0
then the fixed point S  of 0, 1s unique in the class 4 CE , defined as
follows.
0, jx (i) |
E, = (Xtf : sup ==-e-eee--- w}
icA 0,
s (1)+yg(1)
0, 04

S is the pointwise limit of any power seqguence of 02, with 1nitial point 1in Eg.
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Proof

04 04 04 04
. Part (i):Let Y = (S +g) M. Since S = (4(S ), we have that,
. 01 01

Y /M-g=04(y /M-gq)
' or
; 04 04 01 0y 04

y (i) = M(bj +g9(i) = & cjypg(k)) + L cjx v (i) (A.2)
KEA k€A

From (A.2) and (b), we see that the operator 0 with parameters,

o 04 04
bl = M (b; +g(i)=- L ¢, g(k)), i €A
keA
) 0 .
¢Tik = Cix ik €A,
0

has a nonnegative fixed point s® =y 1. Because of (@) and (d), O is a majorant

of (3. From theorem A.1, we conclude that 0, has a fixed point.

~ 1
. Part (ii) : This follows from A.2, by observing that S? =MS, , and, therefore,
- 0y

E9 = E, .

~ Part (iii) : Under condition (e), theorem A.3 is applicable, and shows the uniquene

N 04
. of the fixed point in Eg .

The following lemma is useful in identifying the class within which the fixed

point of an operator is unique, in the case where the solution of the majorant 1is not

exactly known.
Lemma A.l if s,F :A +» R, and,

() S, F are nonnegative

s(i)
. {b) sup --=- < ®
= icA 6(1)
. s(i)
3 (c) inf ==-=- > 0,
; oA g1

-

P P A TP R
s sf’*$¢' .. " ..f Oy ’ ..n"‘.
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A.S
[x(i)| [x(i) | ,
then sup ~----- ¢ ®, iff sup =~=-== ¢ @, X &£ , i.e. the classes
ieA  4(1) icA s(i)
x(1i) x(1)
Eg = {xeA: sup l—----l < =} and Ep = {xeA: sup l----l < @}, coincide.
ieA s(i) ieA  4(1)
Proof For the "if" part let
|x(i) ]
Sup ==—---= =A<+ |x(i)| < As(i), 1i¢A (A.3)
ieA s(i)
Because of (b), we have,
s{(i) < B §(i), i €A, B = (A.4)
‘ . |x(i)|
From (A.3), (A.4), we conclude that, [x(i)| € A B (i), i €A or, sui ng;-- <ABC
i€ 1

The proof of the "only if”" part is similar.

The lemma below is used to establish the existence of a fixed point SL of an
operator L, as well as upper and lower bounds on SL. Its proof, via induction,
is straightforward.

Lemma A.2 Let L be an operator with nonnegative parameters i.e. :

c?k >0 i,k €A, bf 30, i€A If there exist points Y°, x° EEL,

such that,

(a) ¥° < x°

(b) x° >1L(x%°) >0
(c) ¥° < L(Y®),
then the power sequence of L, with initial points X° (Y®) decreases (increases)

monotonically and pointwise, to a fixed point SL(SL). Furthermore, Y° < §

L L < x°.

<s

and SL > 0.

It is generally difficult to establish tight bounds on SL, using the method

exhibited by lemma A.2. The following theorem provides an alternative method for

the computation of such bounds.

¢ e m e .
Ca e, et e T
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Theorem A.5 Let L be an operator with nonnegative parameters:
ek, 20, i,keA, b 50, i eA.

Let sL be a nonnegative fixed point of L, for which it is known that
LY < st < UL,LL, SL, ul e ED, Let AjC:A, A; be the complement

of Aj, and let °j Fj, Oj be the operators with parameters,

L .
03 9j Fy  (Cik » LokeAy
Cik T €ik T Cik ‘{

0 , Otherwise

L
po Pl Agli"‘ s“(k) , ich,
j KE 3
by =
0 ¢« Otherwise
L L L .
P +k§AcCik (k) , Pi < bj_r leAj
Y :
biJ _ J
0 ¢ Otherwise
L L L .
gy + L cCik U (k) , 03 2Dby, xeAj
Oj keAj
bi =

0 ¢+ Otherwise

3j
Then, (a) Fj has a nonnegative fixed point S ~, such that,

F. shiy , 1 €A
J . ]
s (i) ={
0 , Otherwise
b3
(b) Qj is a minorant of Fj, and its principal solution S . is such that,
$. F. F.
J J ]
U S§ Se £ Se ¢S Oj
bj
(c) Oj is a majorant of Fﬁ, and if sup ==-=- < ®, then Uj has a
ieA L.
J J
05 bj

J
nonnegative fixed point S + such that,

F. ). ).
Y5 Oy

J
0 € Se € Se <Ss




(d) If in addition to the previous conditions, also sk » 0, and

bk
inf -—f—- > 0, then the operators °j' Fj, @j have respective
1eAj sk(i)
o5 F5 o
unique fixed points, S ¢ S , 8 « in the class
Fy \ |x(1) | ¥ Fs 9
E" ={x ¢k : sup —===== <®5, and S <s§s <s
i€k Fj
s (i)

Remark If vi is a finite set with b% > 0, ¥i ¢ D., conditions (c) and (d) are

]
clearly satisfied. If in addition, p;, =0, = b?, and Aj;’A, then it can be
F. 0.
J L J L . .
shown ([21] that, S, *+ 8”, and S, * S”, pointwise.
j‘)@ j+¢o

The quantities of interest in the various random access algorithms are statisti
of random variables, where many of those statistics are fixed points of some operato
Theorem A.6 is used to justify the latter statement and appeared in [15].

Theorem A.6 Let L be an operator with nonnegative parameters, that has a unique

[ |
nonnegative fixed point s” in the class Eg = {xeD : sup ---- < ®w},
iel  g(i)

Let {xin}, {xi), i €D, n € N, be families of random variables, such that,
{a) 0 < x;‘/xi, a.e. for every i €D
(b) x? < Mng(i), a.e. for every 1 ¢ D, Moo<
(¢c) £ < L(f), £ = L(f), where £ (1) = E {x;™, £(i) = E {x;}
Then, f coincides with the unigque fixed point sl in Eg.
Proof
We observe that because of (b), then fn EEL, and because of (c¢) and lemma A.2,

then fn < sl since also fn increases to f pointwise, because of (a) and the

monotone convergence theorem, we conclude that £ ¢ SU, and therefore f ¢ EL.

The assertion now follows, from the fact that f is a fixed point of L.
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APPENDIX B

4.2, we saw that the computation of conditional expectations,

can be computed with high accuracy. Let us define,

E{x|d, k} :

Then,

In this appendix, we show that those conditional expectations

The conditional expectation of the random variable X, given that

the arrival interval contains k packets, and has length d.

© 5 k
E{x|d} = T E{x|d,kie™?d 5%%1— (B.1)
k=0 '

Using the rules of the algorithm, the quantities E{X|d,k} can be computed

recursively , as follows.

E{2/4,k} =
E{%/1,0}

E{2/1,k}

k
where Pi =

E{8/d,k}

E{§/1,0}

E{§/1,k =
E{22/d,k}=
E{2%/1,0}=
E{2%/1,k}=

E{62/d,k}=
E{62/1,k}=

. AR

E{2/1,k}; ¥ deF
E{2/1,1} = 1 , (B.2)

k-1
(L+PI4E(L/1,k-1)PT+ 2 E{2/1,1)05)/(1-265); & > 2
1m2

(£)27
d E{8/1,k}; ¥ deF

E{6/1,k} = 1 (B.3)
k-1

(PK+PIHE(8/1,kIPT+ £ E(6/1,1}P%)/(2-(1-P)); k > 2
i=2

E(22/1,k};¥ deF

E{22/1,1} = 1
k-1
(2E{2/1,k}+2E{2/k,k-1}* P 1+sz{z /1,k=-1}+ ¢ E{2 /1, 1}9 )/
i=2
(1-2P0); k>2 (B.4)

a?F{62/1,k} ; ¥ deF

E{62/1,1} = 1

(.25 Bk+eb)+.5 PER(8/1,k}+.5 Py E{8/1,k-1}+.25 E{82/1,k-1}P%+
k-1

25 £ B(82/1,1)0%/(1-.5P%) ; k > 2 (8.5)
1=2

AR
.........
--------------------




E{82/d,k}

E{8%/1,0}
E{62/1,k}

E{N/d,k}
E{N/1,0}
E{N/1,k}
E{w/d,k}
E{w/1,0}
E{w/1,k}
E{y/d,k}
E{y/1,0}
E{y/1,k}

= d E{6%/1,k} ; ¥ deF

= E{62/1,1} = 1

- (3{6/1,k}+.sp§3{£/1,k-1}+.5pgn{z/1,k-1}+.s Po+.SE(8/1,k-1P5+
k-1

+.SPKE(62/1,k-1}+.5 T B(62/1,13¥)/(1-B) ; Kk > 2 (B.6)
im=2

= E{N/1,k}; ¥ deF

= 0, E{N/1,1} =1

k-1
= PNeRlEN/1, k104 T E(N/L, 40P K > 2 (8.7)
1=2
= E{w/1l,k}; ¥ deF
= 0, E{w/1,1} =1 (B.8)
k-1
= (kemlN/1, R PYEN/1, k-114REE{0/1,k-1}+ T E{w/1,kIP5) /(1285 k > 2
i=2
= d E{y/1,k}; ¥ deF
- 0, E{y/1,1} = 7 (8.9)
K K k k1 K
= (E{N/l,k}(l—Po)-PtE{N/l,k-1}+.5P1+E{w/1,k-1}P1+ T E{wll,i}ri)
i=2

12 (1B 5 k> 2

From formulas (B.2)-(B.9), we see that a finite number, M, of terms from the

infinite series (B.1l), can be easily computed. Also, for large k values, and based

on the recursive expressions, simple upper and lower bounds on E{X/d,k} can be

k
developed. Those bounds can be used to tightly bound the sum °£° l‘.‘{x/d,k}e-)";l S—t?—)

k=M+1

Remark It can be also proved that

E{N/d} = AE{&/d}

E{y/d} = Ad E{8/d} - AE{8%/d}
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